
Reassessment of
Java Code Management

Andrey Petrov
January 8, 2010

Random Thoughts

Friday, January 8, 2010

Principal Issues

• Customization of favorite IDEs.

• Lack of common project templates.

• Guessing the purpose, scope, dependencies, and
build nuances of existing units of code.

• Deployment over a network share.

• Volume of Webstart downloads.

• All-at-once builds.

• Lack of a staging (test) environment.

• Stupid CVS.

2

Friday, January 8, 2010

Code Infrastructure

3

Friday, January 8, 2010

How It Works Now

4

ProductionCVS

Developer User

Builder

Source

Libraries

Built Artifacts

Meta-Info

Application Index

Friday, January 8, 2010

What’s Wrong

• Multiple sources of meta-information.

- Build procedures are not portable.

• 3-party libraries are duplicated in CVS and in the
production repository.

• Can we combine the source code repository and
the production repository?

5

Friday, January 8, 2010

How It Works Now

6

ProductionCVS

Developer User

Builder

Source

Libraries

Built Artifacts

Meta-Info

Application Index

Friday, January 8, 2010

What’s Desired

7

ProductionVCS

Developer User

Builder

Source

Libraries

Built Artifacts

Meta-Info

Friday, January 8, 2010

Run-Time Testing

8

Staging

Developer User

Source

Libraries

Built Artifacts

Meta-Info

Friday, January 8, 2010

Webstart

9

Friday, January 8, 2010

How It Works Now

• JNLP file is generated dynamically according to
information from the Application Index.

- Among other things, it lists the names of
required libraries.

• For every library, the client checks whether it is
already cached, and whether a newer version is
available on the server.

• The missing and newer libraries are downloaded
and cached.

• The application is launched.

10

Friday, January 8, 2010

What’s Wrong

• Slow.

• Application libraries are coarse-grained.

• Lack of version attributes on individual libraries.

- Many jars don’t change between releases.

- Have to check time stamps to distinguish
different versions of a jar.

• JNLP file is not bound to a particular application
version.

11

Friday, January 8, 2010

What’s Desired

• Automatically created jars for every application.

• Elaborated versioning scheme for libraries.

• Background download of libraries.

- The application starts immediately if a previous
version is available in the cache.

• Pre-load of the system cache on public consoles.

• Generation of JNLP files by the building system.

12

Friday, January 8, 2010

Why We Can’t Use
Incremental Download

• Download and verification of 25M’s gov.jar takes...

- whole file:

 9.5 s.

- minuscule patch:
 20 s.

13

Friday, January 8, 2010

Development
Environment

14

Friday, January 8, 2010

What’s Wrong

15

• Customization of favorite IDEs.

- Eclipse excluded.

• Lack of common project templates.

• Guessing the purpose, scope, dependencies, and
build nuances of existing units of code.

• Deployment over a network share.

• Volume of Webstart downloads.

• All-at-once builds.

• Lack of a staging (test) environment.

Friday, January 8, 2010

What’s Desired

• Splitting the source code into smaller parts.

• Describing what every part is, and how it can be
used: checked out, compiled, packaged, and run.

- In a machine-readable format!

• Keeping the descriptions along with the code.

• Using a common code management client,

- Multi-platform.

- Command-line and integration with IDEs.

• Always using local copies of external libraries.

16

Friday, January 8, 2010

Development Lifecycle

17

Check out an existing
application form VCS.

Create a new empty
application from a template.

CleanEdit Build Test

Submit built artifacts to the
staging environment.

Commit source code and
meta-info to VCS.

Building

Testing

Deployment to production

I

II

III

IV
Server

Client

Ve
rs

io
n

X
Ve

rs
io

n
Y

Friday, January 8, 2010

Building System

18

Friday, January 8, 2010

19

• Not portable.

• Have to rebuild the full code base all the time.

- Release is huge, difference is tiny.

• Lack of staging environment.

• Beta builds make no sense.

• Difficult to handle custom building procedures,
native libraries.

• Can we compile less and unit-test more?

• Wizardry of dependency management.

What’s Wrong

Friday, January 8, 2010

CVS Issues

• Slow.

• Awkward interface and unexpected results.

• Lack of reliable historical data and reports.

• Lack of a secure connection.

20

Friday, January 8, 2010

Practical Steps

21

Friday, January 8, 2010

The Plan

22

1. Physically split the gov tree into a fresh repository
and annotate the new modules. No refactoring
unless absolutely necessary.

2. Develop the development building environment.

3. Develop and set up the central building system.

4. Update Application Index.

5. Set up a [new?] version control system.

6. Set up new production and staging repositories.

Friday, January 8, 2010

Code Modules

• Can be checked out and built independently.

• An atomic module is an application or a library.

• Don’t have to follow package boundaries.

- However, each file from the gov tree goes to
exactly one module.

• Use a standard directory layout:

- main source, test source, resources, meta-info.

• Get built into one or several deployment units:

- jar and war archives, jnlp files, ...

23

Friday, January 8, 2010

Module Hierarchy

24

Ü

core appstools

console web

fe

... synoptic autotune errorskerberosdbdae

the über-module

super modules

low-level modules

Friday, January 8, 2010

Module Meta-Information

• Describes what the module is:

- unique identifier,

- version,

- external dependencies,

- location in a source control repository,

- variations to the building procedure,

- author, keeper, etc.

• Can be inherited from a top-level descriptor.

• Supersedes Application Index.

25

Friday, January 8, 2010

Building System

• Apache Maven.

- Strong similarities with Common Build.

• Unrelated to Ant.

- “What to do” (Maven) vs. “How to do” (Ant).

• Rich set of defaults based on best practices.

- Customizable.

• Support command-line interface and integration
with common IDEs. Platform-independent.

• Comprehensive open-source repositories.

26

Friday, January 8, 2010

Maven Command Line

• Creating an empty project:
mvn archetype:create
 -DgroupId=gov.fnal.controls
 -DartefactId=example
 -DpackageName=gov.fnal.controls.example

• Compile a project:
mvn compile:compile

• Build a project and deploy in the local repository:
mvn install

27

Friday, January 8, 2010

Maven Repositories

28

Local

Enterprise

Global
Well-categorized

open source

Working copies

• Proprietary code
• Signed libraries
• Maven customization

Friday, January 8, 2010

Standard Directory Layout

src/

 main/

 java/

 resources/

 webapp/

 test/

 java/

 resources/

target/

pom.xml

29

Friday, January 8, 2010

Project Object Model (POM)

<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>gov.fnal.controls</groupId>
<artifactId>parameter-page</artifactId>
<version>1.0-SNAPSHOT</version>
<name>Parameter Page</name>
<url>http://www-bd.fnal.gov</url>
<dependencies>
 <dependency>

 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>

</dependencies>
</project>

30

Friday, January 8, 2010

http://www-bd.fnal.gov
http://www-bd.fnal.gov

Version Control System

• Subversion? Git?

• A nice opportunity to switch.

• Interoperability with CVS is desired.

• The system have to remain usable for a long time.

31

Friday, January 8, 2010

Considerations on Migration

• The build product should be binary compatible.

- Actual jars will be different.

• Don’t have to switch all at once.

- One module at a time?

- Maintain two repository, synchronize regularly?

- Keep the CVS repository, start new project in
the new repository?

32

Friday, January 8, 2010

